Neural blind separation of complex sources by extended APEX algorithm (EAPEX)
نویسندگان
چکیده
Blind Source Separation by non-classical (non-quadratic) neural Principal Component Analysis has been investigated by several papers over the recent years, even if particular attention has been paid to the real-valued sources case. The aim of this work is to present an extension of the KungDiamantaras’ APEX learning rule to non-quadratic complex optimization, and to show the new approach allows blind separation of complex-valued source signals from their linear mixtures.
منابع مشابه
Blind separation of circularly distributed sources by neural extended APEX algorithm
The aim of this work is to present a generalized Hebbian learning theory for complex-weighted linear feed-forward network endowed with lateral inhibitory connections, and to show how it can be applied to blind separation from complex-valued mixtures. We start by stating an optimization principle for Kung-Diamantaras' network which leads to a generalized APEX-like learning theory relying on some...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملFiori : on Blind Separation of Complex Sources by Extended Hebbian Learning
|The aim of this Letter is to present a non-linear extension to Sanger's generalized Hebbian learning algorithm for complex-valued data neural processing, which allows for separating mixed independent circular source signals. The proposed generalization relies on an interesting interpretation of non-classical Hebbian learning proposed by Sudjianto and Has-soun for real-valued neural units.
متن کاملBlind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm
Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999